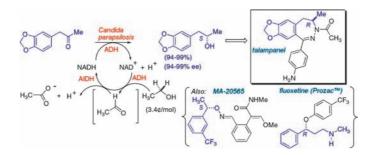
## ORGANIC LETTERS

2009 Vol. 11, No. 2 305-308


## Enantioselective, Ketoreductase-Based Entry into Pharmaceutical Building Blocks: Ethanol as Tunable Nicotinamide Reductant

Sylvain Broussy, Ross W. Cheloha, and David B. Berkowitz\*

Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304 dbb@unlserve.unl.edu

Received October 24, 2008

## **ABSTRACT**



The use of NADH- and NADPH-dependent ketoreductases to access enantioenriched pharmaceutical building blocks is reported. Seven structurally diverse synthons are obtained, including those for atomoxetine (KRED 132), talampanel (RS1-ADH and CPADH), Dolastatin (KRED 132), and fluoxetine (KRED 108/132). Ethanol may be used as stoichiometric reductant, regenerating both nicotinamide cofactors, particularly under four-electron redox conditions. Its favorable thermodynamic and economic profile, coupled with its advantageous dual cosolvent role, suggests a new application for biomass-derived ethanol.

As has been pointed out in a recent overview from the Merck Process Group, <sup>1</sup> advances in ketoreductase (KRED or alcohol dehydrogenase = ADH) technology have increased their potential for process chemistry. Asymmetric enzymatic reductions, ex vivo, are now more easily investigated in the research laboratory and may be optimized there, under controlled conditions, offering a viable and complementary alternative to in vivo approaches, for example, in genetically engineered yeast<sup>2</sup> or *E. coli*.<sup>3</sup> The ex vivo system circumvents issues of substrate, product, and cosolvent toxicity, provided that enzyme activity and enantioselectivity are preserved.

We have a standing interest in the use of enzymes in asymmetric synthesis, for example, to access enantiomerically enriched podophyllum lignans<sup>4</sup> or quaternary,  $\alpha$ -vinyl amino acids.<sup>5</sup> More recently, that focus has turned to ADHs, as catalytic reporting enzymes to facilitate the evaluation of organometallic catalysts via ISES (in situ enzymatic screening).<sup>5,6</sup> Parallel to these studies, we have undertaken to exploit ketoreductases in target-directed asymmetric synthe-

<sup>(1)</sup> Moore, J. C.; Pollard, D. J.; Kosjek, B.; Devine, P. N. Acc. Chem. Res. 2007, 40, 1412–1419.

<sup>(2)</sup> Kaluzna, I. A.; Feske, B. D.; Wittayanan, W.; Ghiviriga, I.; Stewart, J. D. *J. Org. Chem.* **2005**, *70*, 342–345.

<sup>(3) (</sup>a) Li, W.; Xie, D.; Frost, J. W.; Niu, W. J. Am. Chem. Soc. 2005, 127, 2874–2882. (b) Draths, K. M.; Frost, J. W. Biotechnol. Prog. 2002, 18, 201–211.

<sup>(4) (</sup>a) Berkowitz, D. B.; Choi, S.; Maeng, J.-H. *J. Org. Chem.* **2000**, 65, 847–860. (b) Berkowitz, D. B.; Hartung, R. E.; Choi, S. *Tetrahedron: Asymmetry* **1999**, 10, 4513–4520. (c) Berkowitz, D. B.; Maeng, J.-H.; Dantzig, A. H.; Shepard, R. L.; Norman, B. H. *J. Am. Chem. Soc.* **1996**, 118, 9426–9427.

<sup>(5)</sup> Berkowitz, D. B.; Pumphrey, J. A.; Shen, Q. *Tetrahedron Lett.* **1994**, 35, 8743–8746.

<sup>(6) (</sup>a) Dey, S.; Powell, D. R.; Hu, C.; Berkowitz, D. B. *Angew. Chem., Int. Ed.* **2007**, *46*, 7010–7014. (b) Dey, S.; Karukurichi, K. R.; Shen, W.; Berkowitz, D. B. *J. Am. Chem. Soc.* **2005**, *127*, 8610–8611. (c) Berkowitz, D. B.; Maiti, G. *Org. Lett.* **2004**, *6*, 2661–2664. (d) Berkowitz, D. B.; Bose, M.; Choi, S. *Angew. Chem., Int. Ed.* **2002**, *41*, 1603–1607.

Table 1. Asymmetric Ketoreductase-Mediated Access to Pharmaceutical Building Blocks

| ketone                               | enzyme <sup>a</sup> | convn <sup>b</sup> | ee <sup>c</sup> | prod<br>config <sup>d</sup> | pharmaceutical target | trade name(s)<br>(config.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | application                                    |
|--------------------------------------|---------------------|--------------------|-----------------|-----------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                                      |                     |                    |                 | 7,0                         | CF <sub>3</sub>       | Emend,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Human                                          |
|                                      |                     |                    |                 |                             | F <sub>3</sub> C      | Aprepitant,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | neurokinin-1                                   |
| H <sub>3</sub> C_O                   | HLADH <sup>e</sup>  | 99%                | 98%             | (S)-2                       |                       | L-754030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (NK-1)                                         |
|                                      | CPADH'              | 99%                | 98%             | (S)-2                       | Me                    | ( <i>R</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | antagonist,                                    |
|                                      |                     |                    |                 |                             | O N                   | M W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | anti-emetic,                                   |
| F <sub>3</sub> C CF <sub>3</sub> (1) |                     |                    |                 |                             |                       | (S)-enantiomer is<br>a constituent of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | adjuvant for                                   |
|                                      |                     |                    |                 |                             | H-N-N-1               | a constituent or analogues in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cancer                                         |
|                                      |                     |                    |                 |                             | Ö                     | clinical trials <sup>g</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | chemotherapy                                   |
|                                      |                     |                    |                 |                             | Me                    | Talampanel,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AMPA receptor                                  |
|                                      |                     |                    |                 |                             | 0                     | LY-300164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | antagonist,                                    |
| O. A. CHa                            | HLADH               | 99%                | 95%             | (S)-4                       | N-(                   | L1-300104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | anti-                                          |
| MAL                                  | CPADH               | 99%                | 99%             | (S)-4                       | O CH <sub>3</sub>     | (R) <sup>h</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | convulsant, for                                |
| Ö Ö                                  | RS-1 ADH            | 99%                | 99%             | (S)-4                       |                       | (71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the treatment                                  |
| (3)                                  | HO I ADII           | 00 /0              | 00 /0           | (0) 4                       | [ ]                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of epilepsy,                                   |
|                                      |                     |                    |                 |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | viral                                          |
|                                      |                     |                    |                 |                             | H₂Ń                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | encephalo-                                     |
|                                      |                     |                    |                 |                             | ANALY MANAGE          | Dolastatin 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | phase II                                       |
|                                      | <b>KRED 101</b>     | 40%                | 37%             | (R)-6                       | Me                    | ( <i>R</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | clinical trials,                               |
| ST                                   | <b>KRED 108</b>     | 86%                | 94%             | (R)-6                       | Me o <sup>Me.</sup>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anti-cancer                                    |
|                                      | <b>KRED 118</b>     | 85%                | 65%             | (R)-6                       | Me Ny NY 0            | YN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | agent                                          |
|                                      | <b>KRED 132</b>     | 83%                | 98%             | (5)-6                       | O NH Me OMe O         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| (5)                                  |                     |                    |                 |                             | Me Ne Me H            | Dysidenin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | natural                                        |
|                                      |                     |                    |                 |                             | Me Me                 | barbamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | product, anti-                                 |
|                                      |                     |                    |                 |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | proliferative                                  |
| H <sub>3</sub> C_O                   | CPADH               | 99%                | 98%             | (S)-8                       | H <sub>3</sub> C NHMe | MA-20565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | antifungal                                     |
|                                      | RS-1 ADH            | 92%                | 98%             | (S)-8                       | , O = O = O           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | agent                                          |
|                                      | LKADH               | 90%                | 86%             | (R)-8                       | OMe                   | (S)'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| CFo (=)                              | KRED 132            | 94%                | 98%             | (S)-8                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| CF <sub>3</sub> (7)                  | THILD TOE           | 0470               | 00 /0           | (0)0                        | CF <sub>3</sub>       | DELLA PROPERTY AND ADDRESS OF THE PARTY OF T | Sent for his out of the Control of the Control |
| 0                                    | <b>KRED 101</b>     | 50%                | 5%              | (S)-10                      | CF <sub>3</sub>       | Fluoxetine,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | serotonin                                      |
| O. Me                                | KRED 101            | 40%                | 7%              | (R)-10                      |                       | Prozac;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | reuptake                                       |
| O Me                                 | KRED 118            | 65%                | 30%             | (S)-10                      | N CH <sub>3</sub>     | also appl. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | inhibitor, anti-                               |
| ~                                    | KRED 132            | 82%                | 97%             | (S)-10                      | N. Cita               | Strattera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | depressent                                     |
| (9)                                  | 111122 102          | 0270               | 01 70           | (0) 10                      | Н                     | $(R)$ or $(R,S)^{j,k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |
| 0                                    |                     |                    |                 |                             | Me                    | Atomoxetine,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | norepinephrine                                 |
| , Ĭ                                  | <b>KRED 108</b>     | 85%                | 97%             | (S)-12                      |                       | Strattera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | reuptake                                       |
| CI                                   | <b>KRED 118</b>     | 90%                | 80%             | (S)-12                      | O CH                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inhibitor,                                     |
| (11)                                 | KRED 132            | 60%                | 40%             | (S)-12                      | N-CH <sub>3</sub>     | ( <i>R</i> ) <sup>k</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | treatment of<br>ADHD                           |
| 0 0                                  |                     |                    |                 |                             | Me                    | Atomoxetine,<br>Strattera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |
| N CH <sub>3</sub>                    | <b>KRED 132</b>     | 70%                | 99%             | (S)-14                      | 0                     | Chattera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
| H                                    | KHED 192            | 1070               | 33 /6           | (3)-14                      | N, CH <sub>3</sub>    | ( <i>R</i> ) <sup><i>k</i></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |
| (13)                                 |                     |                    |                 |                             | N                     | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |

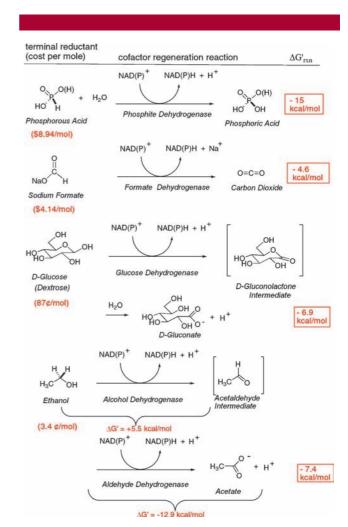
"Color code: NADH and NADPH enzymes in black and green, respectively. Abbreviations: ADH = alcohol dehydrogenase from HL (horse liver), LK (*Lactobacillus kefir*), both from Sigma-Aldrich; CP (*Candida parapsilosis*), RS1 (*Rhodococcus* species-1), both from Jülich; KREDs = ketoreductases, all from Codexis. All substrate screening reactions were run with stoichiometric cofactor and conversion was judged by NMR (see Supporting Information for details). Percent ee established by chiral HPLC [Chiralcel OD or (*S*,*S*)-WHELK O1]. Absolute stereochemistry established by comparison of the sign of optical rotation or relative retention time (chiral HPLC) with literature values (see Supporting Information). The (*S*)-selectivity of HLADH with this ketone has been observed by others (ref 16). While Emend itself has the (*R*)-stereochemistry at the secondary alcohol center in question, Merck is investigating NK-1 receptor antagonists with the (*S*)-stereochemistry at this center (ref 15). Closure of the 7-ring here is via N-attack at a secondary mesylate, inverting the stereochemistry at the key center. The (*S*)-stereocenter of MA-205765 is set via double inversion: first, conversion of the alcohol to the (*R*)-benzylic chloride and then backside displacement with a hydroxylamine nucleophile (ref 20b). Even though fluoxetine is FDA-approved as the racemate, the (*R*)-antipode of the major metabolite, norfluoxetine, more effectively inhibits serotonin reuptake (ref 24). The (*R*)-center in both fluoxetine and atomoxitine is set via inversion of the (*S*)-alcohol, via Mitsunobu conditions with the appropriate phenolate nucleophile (ref 24).

sis. Indeed, the repertoire of enzymes in modern asymmetric synthesis continues to expand, including lipases, amidases, amine oxidases, alcohol and amine DHs, amidases, among others.

In this work, we have focused upon an array of ketones, the asymmetric reduction of which provides valuable pharmaceutical building blocks. In Table 1, each chiral secondary alcohol product is mapped (red shading) onto the pharmaceutical for which it is a synthon. The Aprepitant-leading ketone **1** served as a model for our ex vivo conditions, giving high (*S*)-selectivity with CPADH and HLADH, consistent with reports from Merck<sup>15</sup> and Rhodia, <sup>16</sup> respectively. The

306 Org. Lett., Vol. 11, No. 2, 2009

second ketone screened serves as the substrate for a classic biocatalytic process (*Zygosaccharomyces rouxi* whole-cell route, Zmijewski group at Lilly<sup>17</sup>) for the production of Talampanel. Our screen identified two new DHs here, CPADH and RS-1 ADH, each of which also gives the correct antipode (*S*)-4, with high selectivity.


Ketones **5** and **7** are precursors to building blocks for the promising chemotherapeutic candidate Dolastatin 10 and Mitsubishi's broad spectrum fungicide MA-20565, respectively. In the former case, Genet has reported the use of stoichiometric DIP-Cl (92% ee), <sup>18</sup> whereas Masui employs a diphenylprolinol-ligated borane reagent (92% ee). <sup>19</sup> The highly enantioselective reductions seen here (KREDs 108 and 132) open up alternative "green" processes. Similarly, while both Ru(II)-diamine-<sup>20</sup> and Rh-diamine-based<sup>21</sup> asymmetric hydrogenations of **7** have been reported, reductions with CPADH, RS-1 ADH, and KRED 132, uncovered in these studies, provide viable biocatalytic alternatives.

The final three entries (9, 11, 13) in Table 1 are precursors to either (R)-Strattera or (R)-Fluoxetine. While there are isolated reports of whole-cell procedures for the asymmetric carbonyl reduction of 11, either with  $Saccharomyces^{22}$  or  $Rhodotorula^{23}$  species, we find no previous literature descriptions of asymmetric biocatalytic reductions of either 9

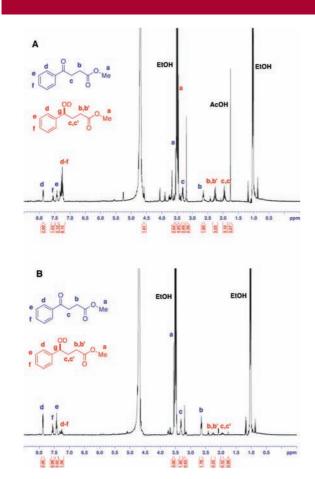
- (7) (a) Fluxa, V. S.; Wahler, D.; Reymond, J.-L. *Nat. Protoc.* **2008**, *3*, 1270–1277. (b) Boettcher, D.; Bornscheuer, U. T. *Nat. Protoc.* **2006**, *1*, 2340–2343. (c) Reetz, M. T.; Bocola, M.; Carballeira, J. D.; Zha, D.; Vogel, A. *Angew. Chem., Int. Ed.* **2005**, *44*, 4192–4196. Qian, Z.; Lutz, S. *J. Am. Chem. Soc.* **2005**, *127*, 13466–13467.
- (8) Savile, C. K.; Magloire, V. P.; Kazlauskas, R. J. J. Am. Chem. Soc. **2005**, 127, 2104–2113.
- (9) Dunsmore, C. J.; Carr, R.; Fleming, T.; Turner, N. J. J. Am. Chem. Soc. 2006, 128, 2224–2225.
- (10) (a) Zhu, D.; Yang, Y.; Majkowicz, S.; Pan, T. H.-Y.; Kantardjieff, K.; Hua, L. *Org. Lett.* **2008**, *10*, 525–528. (b) Zhu, D.; Ankati, H.; Mukherjee, C.; Yang, Y.; Biehl, E. R.; Hua, L. *Org. Lett.* **2007**, *9*, 2561–2563. (c) Voss, C. V.; Gruber, C. C.; Kroutil, W. *Angew. Chem., Int. Ed.* **2008**, *47*, 741–745. (d) Kalaitzakis, D.; Rozzell, J. D.; Kambourakis, S.; Smonou, I. *Org. Lett.* **2005**, *7*, 4799–4801.
- (11) Hummel, W.; Kuzu, M.; Geueke, B. Org. Lett. 2003, 5, 3649-3650.
- (12) (a) Bottalla, A.-L.; Ibrahim-Ouali, M.; Santelli, M.; Furstoss, R.; Archelas, A. Adv. Synth. Catal. 2007, 349, 1102–1110. (b) Reetz, M. T.; Wang, L.-W.; Bocola, M. Angew. Chem., Int. Ed. 2006, 45, 1236–1241. (c) Edegger, K.; Mayer, S. F.; Steinreiber, A.; Faber, K. Tetrahedron 2004, 60, 583–588.
- (13) Dean, S. M.; Greenberg, W. A.; Wong, C.-H. Adv. Synth. Catal. **2007**, 349, 1308–1320.
- (14) Voelkert, M.; Koul, S.; Mueller, G. H.; Lehnig, M.; Waldmann, H. J. Org. Chem. **2002**, 67, 6902–6910.
- (15) Pollard, D.; Truppo, M.; Pollard, J.; Chen, C.-Y.; Moore, J. Tetrahedron: Asymmetry 2006, 17, 554–559.
- (16) Gelo-Pujic, M.; Le Guyader, F.; Schlama, T. *Tetrahedron: Asymmetry* **2006**, *17*, 2000–2005.
- (17) Anderson, B. A.; Hansen, M. M.; Harkness, A. R.; Henry, C. L.; Vicenzi, J. T.; Zmijewski, M. J. *J. Am. Chem. Soc.* **1995**, *117*, 12358–12359.
- (18) Mordant, C.; Reymond, S.; Tone, H.; Lavergne, D.; Touati, R.; Ben Hassine, B.; Ratovelomanana-Vidal, V.; Genet, J.-P. *Tetrahedron* **2007**, *63*, 6115–6123.
  - (19) Masui, M.; Shioiri, T. Synlett 1997, 273–274.
- (20) (a) Ahlford, K.; Zaitsev, A. B.; Ekstroem, J.; Adolfsson, H. Synlett **2007**, 2541–2544. (b) Tanaka, K.; Katsurada, M.; Ohno, F.; Shiga, Y.; Oda, M.; Miyagi, M.; Takehara, J.; Okano, K. *J. Org. Chem.* **2000**, *65*, 432–437
- (21) Matharu, D. S.; Morris, D. J.; Clarkson, G. J.; Wills, M. Chem. Commun. 2006, 3232–3234.
- (22) (a) Ou, Z.; Wu, J.; Yang, L.; Cen, P. Kor. J. Chem. Eng. **2008**, 25, 124–128. (b) Fronza, G.; Fuganti, C.; Grasselli, P.; Mele, A. J. Org. Chem. **1991**, 56, 6019–6023.
- (23) Yang, W.; Xu, J.-H.; Xie, Y.; Xu, Y.; Zhao, G.; Lin, G.-Q. *Tetrahedron: Asymmetry* **2006**, *17*, 1769–1774.

or 13. In this regard, the success we have had with KRED 132, in both cases, is quite notable. The ee's are certainly competitive with those seen using Itsuno—Corey oxazaborolidine reduction (Senanayake)<sup>24</sup> in the former case or Pd(II)-sparteine-mediated oxidative kinetic resolution (Stoltz)<sup>25</sup> in the latter

With a half-dozen promising new DH-based asymmetric reductions in hand, we next set about to examine cofactor regeneration. The most commonly used nicotinamide-regenerating reagents, with favorable thermodynamics, are collected in Figure 1 and compared with EtOH. Note that



**Figure 1.** Thermodynamics of nicotinamide cofactor regeneration; tunability of the ethanol reductant.


van der Donk and Zhao<sup>26</sup> have recently opened the door to phosphite-based reductions, with the most favorable redox potential of the group. Although Wong and Whitesides<sup>27</sup> established the potential for using EtOH in biocatalytic reductions with water-soluble substrates, use of this reductant for chemoenzymatic synthesis has lagged behind. However, EtOH is attractive here in (a) having a favorable redox

Org. Lett., Vol. 11, No. 2, 2009

<sup>(24)</sup> Hilborn, J. W.; Lu, Z.-H.; Jurgens, A. R.; Fang, Q. K.; Byers, P.; Wald, S. A.; Senanayake, C. H. *Tetrahedron Lett.* **2001**, 42, 8919–8921. (25) Caspi, D. D.; Ebner, D. C.; Bagdanoff, J. T.; Stoltz, B. M. *Adv. Synth. Catal.* **2004**, 346, 185–189.

potential, (b) being economically priced and readily available from the biomass fermentation stream, and (c) potentially serving a dual role as organic cosolvent. Regarding the first point, employing EtOH as a four-electron reductant provides for more favorable thermodynamics, which result from the highly exergonic reduction of NAD(P) with acetaldehyde, provided that aldehyde DH (AlDH) activity is present.

This tunability of the EtOH reductant was examined in a model NMR experiment (Figure 2) with KRED 132 and



**Figure 2.** Comparison of the KRED-132-mediated reduction of ketone **9** with NADPH (2 mol %) regeneration using LKADH (50 mM KPO<sub>4</sub> in D<sub>2</sub>O, pD 7.5; 300 rpm, 30 °C, 3 h), both with (panel A) and without (panel B) YAlDH (see Supporting Information for details). Note the increased conversion and AcOH production under four electron reduction conditions.

ketone 9. KRED 132 requires NADPH. We have found that LKADH can effectively be used to oxidize EtOH with NADP. In our hands, yeast AlDH also efficiently utilizes NADP. So, this LKADH/YAlDH couple was employed to access the full four-electron reducing capacity of EtOH (panel

A) and compared with the reaction under two-electron redox conditions (no YAIDH, panel B, Le Chatelier effect alone). In fact, the reduction run under four-electron reducing conditions proceeds much more rapidly. As expected, one sees the clear AcOH signature in the former case, attesting to the four electron redox cycle in play. Table 2 illustrates

**Table 2.** Biocatalytic Reductions at the Millimolar Scale; Ethanol as Four-Electron Reductant<sup>a</sup>

| chiral product                  | ADH         | regen<br>system        | cofactor<br>(mol %) | yield | ee         |
|---------------------------------|-------------|------------------------|---------------------|-------|------------|
| OH OH                           | CP-<br>ADH  | YADH/<br>YAIDH         | NAD+<br>(0.4)       | 89%   | 94%<br>(S) |
| (4)<br>OH<br>CO <sub>2</sub> Me | KRED<br>132 | LK-<br>ADH/<br>YAIDH   | NADP+<br>(1)        | 86%   | 96%<br>(S) |
| H <sub>3</sub> COH (8)          | RS-1<br>ADH | YADH/<br>YAlDH         | NAD+<br>(1)         | 98%   | 99%<br>(S) |
| H <sub>3</sub> C OH (8)         | LK-<br>ADH  | (LK-<br>ADH)/<br>YAIDH | NADP+<br>(2)        | 64%   | 86%<br>(R) |

 $<sup>^</sup>a$  All reductions were performed on a 1 mmol scale at 30  $^{\circ}\mathrm{C}$  , 300 rpm, pH 7.5 with the cofactor regeneration systems shown. See Supporting Information for details.

the use of these four electron conditions across three different substrates and four different DHs at the millimolar scale.

In summary, the first viable ketoreductase-based entries into secondary alcohol building blocks for Dolastatin 10 (5), Prozac (9), and Strattera (13) are presented here, as are new biocatalytic entries into building blocks for Talampanel (3) and MA-20565 (7). The viability of using biomass-derived EtOH for cofactor regeneration is examined, and the advantage of using four-electron redox cycles in such processes is demonstrated. Future studies will further probe the scope, limitations, and optimal conditions for such "green" alternatives to transition metal or boron hydride based chiral carbonyl reductants for asymmetric process chemistry.

**Acknowledgment.** Support from the NSF (CHE-0616840), Nebraska Center for Energy Sciences Research and Nebraska UCARE (fellowship to RWC) is gratefully acknowledged. Thomas Dau $\beta$ mann and Pascal Dünkelmann (Jülich Chiral Solutions) are thanked for providing CPADH and RS1-ADH.

**Supporting Information Available:** Details of the synthetic and enzymatic chemistry, and spectroscopic and chiral HPLC characterization of products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL802464G

308 Org. Lett., Vol. 11, No. 2, 2009

<sup>(26)</sup> Woodyer, R.; Zhao, H.; van der Donk, W. A. FEBS J. 2005, 272, 3816–27.

<sup>(27)</sup> Wong, C. H.; Whitesides, G. M. J. Am. Chem. Soc. 1983, 105, 5012–14.